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ABSTRACT

A model for genetic algorithms with semantic nets is derived for which the
relationships between concepts is depicted as a semantic net. An organism
represents the manner in which objects in a scene are attached to concepts
in the net. Predicates between object pairs are continuous valued truth
funcﬁonsinthefornlofaninverseexponenﬁalfuncﬁon(e"x). I:n
relationships are combined via the fuzzy OR (Max [...]). Finally,
predicates between pairs of concepts are resolved by taking the average of
the combined predicate values of the objects attached to the concept at the
1ail of the arc representing the predicate in the semantic net. The method
is illustrated by applying it to the identification of oceanic features in the
North Atlantic. .
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BACKGROUND

Genetic algorithms are a problem solving method
requiring domain-specific knowledge that is often
heuristic. Candidate solutions are represented as
organisms. Organisms are groupad into populations
known as generations and are combined in pairs to
produce subsequent generations. An individual
organism’s potential as a solution is determined
by a fitness function.

Fitness functions map organisms into real numbars
and are used to determina which organisms will be
used (and how frequently) to produce offspring for
the succeeding generation. Fitness functions
often raequire heuristic information because a
precise measure of the suitability of a given
organism (i.e., solution) is not always
attainable. An example is the recognition (i.e.,
labeling) of segments in a scense. General
characteristics of objects in the scene such as
curvature, size, length, and relationship to each
other may be known only within broad tolerance
levels. That is, there is great varlability in
the relationships among objaects in differant
scenes.

Semantic nets (SNs) are effactive representations
of binary relationships between concepts (@.9.,
objects in a scene). SNs denote concepts via
nodes in a directed graph. The arcs are labelled

by

1

,F.E. Pctryl, &M. Lybanon2

2Remote Sensing Branch
Naval Ocean Research and Development Activity
NSTL Station, MS 39529

representation

by predicates. We introduce here 3
luation

of an organism whose fitness function eva
is dependent upon an SN context.

onships (i.e., predicates) relating
their avaluation is in

Because relati
concepts are not precise,
the form of a truth functional with range [0,1]
rather than the traditional (0,1}. That is, we
use fuzzy logic [YA7S5, ZA88, 2I85] to combine
hauristically the information concerning a
particular organism. Thus, we derive genetic
algorithms with fuzzy fitness functions (GA/F3).

GENETIC ALGORITHMS

Genetic algorithms (GAs) are search procedures
modelled after the mechanics of natural selection.
They differ from traditional search techniques in
saveral ways. Flrst, GAs have the property of
implicit parallelism, where the algorithm is
equivalent to a saarch of the hyperplanas of the
search space, without directly testing hyperplana
values [HO75, GO88]. Nearly optimal raesults have
been found by examining as few as one point for
every 2 points in the search space [GOBE6].
Second, GAs are randomized algorithms, using
operations with nondeterministic results. The
results for an operation depend on the value of a
random number. Third, GAs operate on many
solutions simultaneously, gathering information
from all current points to direct the search.
This factor mitigates the problems of local maxima
and noilse.

From a mechanistic view, genetic algorithms are a
variation of the generate and test method. In
pure generate and test, solutions are generated
and sent to an evaluator. The evaluator reports
whether the solution posed is optimal. 1In genetic
algorithms, this generate and test process 1s
repeatad iteratively over a set of solutions. The
avaluator returns information to guide the
selection of new solutions for following
iterations.

GA terminology is taken from genatics. Each
candidate solution examined is termed an organism,
traditionally represented as a 1ist. The set of
organisms maintained is termed a population, and
the population at a given time ls termed a
generation. Each iteration envolves three steps.
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First, each organism in the current generation is
evaluated, producing a numerical fitness function
result. The criteria for evaluation is domain
specific information about the relative marit of
that particular organism. Better organisms are
assigned higher fitness function values. Second,
some organisms are selected to form ona or more
organisms for the next generation. Specifically,
the number of copies of each organism selected is
directly proportional to its fitness function.
Third, some of those organisms selected are
modified via genetic operators. Each genetic
operator takes the chosen organism(s), and
produces a new organiam(s) . The most common
genetic operators include crossover and mutation.
This iterative procedure terminates when the
population converges to a solution.

The crossover operator takas two organisms
selected and combines partial solutions of each.
When organisms are reprasented with lists, single
point crossover can bae viewed as combining the
teft hand side of one organism chosen with the
right hand side of the other, and conversely.
This creates two offspring. The crossover point,
that point wherae the crossover takes place, is
randomly determined.

The mutation operator uses a minimal change
strategy. It takes a salected organism, and
changes the value at one randomly determined
position. This corresponds to a tight local
search. The offspring produced is identical to
the parent except at the mutation point.

Segmented Image’

a.

Figure 1, Oceanic Features
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GENETIC ALGORITHM PROBLEM MODEL
FOR OCEANIC FEATURE LABELING

Scena recognition is an application for which the
GA model we propose is suited. For example, Fig.
l(a) is a segmented image of the North Atlantic
for which ¥Fig. 1(b) is the original image. The
lines (referred to hare as segments, s;, 82, ...)
reprasent boundaries between warm and cold regions
of saa water. The problem is to classify the
segments as Gulf Stream North Wall (NW), Gulf
Stream South Wall (SW), cold eddies (CE), warm
eddies (WE), continental shelf (CS), and "other"
{0) .

Relationships which can be expressed as fuzzy
truth functions are known to exist within or
batween classifications. Principal among these
are (1) the average width of the Gulf Stream is 50
kilomaters, (2) the average diameter of an eddy is
100 kilometers, (3) cold eddies are usually south
of the Gulf Stream, and {(4) warm eddies are
usually north of the Gulf Stream. To thése one
must add the trivial (yet nacessary) relationships
such as the south wall is at a lower latitude than
the north wall and the known geophysical
coordinates of continental shelves.

A scene consisting of classification categories
(cat,, caty, ..., cat,) and relationships
expressed as truth functions (P(l)i . P(z)ij, |
betwaen categoriaes can be modelled as a semantic
net (or, more precisely, an association list). A
generic one is ahown in Fig. 2. Saegments are

b. Original Infrared Image

(North Atlantic)
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Figure 2. Generic Semantic Net for Oceanic Features

attached to the categorias via the INST (instance)

relation. An allele (or gene) is a category name. (INSTOl (sy) if 8; € {81/ succ (8yy) /
An organism is a list of categories, one allele INSTq, (83)= { ... pred (sys)}

for each segment. For example, given six segments | INSTy, (8y) otherwise

then (NW, NW, SW, CS, CE,0) and (CE, SW, CE, o, O, )

CS) are representative organisms. Formally, let Varying Multiple Point Crossover. For parent
an association list be defined as A = <V,P> whaera organisms 0; and Oy, create an offspring 0’ such
vV = {caty, caty, ..., catm) i1s a set of that

categories, and P = (Pij(g) | 1, < m, g =

1,2,..., ry4) is a set of binary predicates. (
These predicates describe the realationships INSTqy, (B3) = {
batween categories and the ideal relationship \
betwean segments assigned to these categories.

Let an organism for spatial labeling is defined as

INSTH (31) with probability 0.5

INSTgp (83) with probability 0.5

Q = <S, INST>, whare S = {8y, 83, ..., 8p} is a
set of segments, and INST: § -> V is a function. Mutation Operator
Crossover Operators Our mutation operator selects one segment randomly
and assigns it to a randomly determined category.
There are three applicable crossover operators. Choose two randem integers k1, 1 £ k1l < n, and k2,
These include single point crossover, two point 1 £ k2 £ m. Remove 8j; from its current category
crossover, and varying multiple point crossover in organism O and attach it to caty, (i.e., =met
[BO87]. Crossover operators raequire the INSTq(8)q) ™ catya).
imposition of a total order on the sagments in 8. T
Let 8; < 84 if i < 3; 83 = 54 if 1=3; 84 > 84 if Fitness Function
i > j. Denote by INSTy; the lnstance mapping for
organism Oy . For the model, the fitness function is the sum of
Single Point Crossover. Given < s3, 83, ...r 85>/ all satisfied predicates in the semantic net. Let
choose a random integer k, 1 < k < n. For parent E denote the function. Let Pi‘g), be defined as
organisms 01 and 02 create an offspring, O', such above, with m possible categories. Then
that
. m om .
( INSToy (8y) if i Sk 4
INST,, (83) = 1 - I I 5 pij(q) )
{ INsTg, (sy) i£ 4>k 3 o=
Two Point Crossover. Lat < s3, 83, ..., 35> be a Pig (9) ig a predicate for a relationship k):etwo.n
circular list. Formally, succ(s;) = 8,3 categories, 1 and J. Each predicate Pq(g has a
(pred (s ,q1) = 8;) if i < n and succ(s,) = 5, corresponding derived predicate, predlj 9) (k, 1),
(pred(s;) = s,). Choose two random integers, kl for an analogous relationship between sagmants §)
and k2. For parent organisms O, and O, create an and 8y, where s, is in category i and s; 1is in
offspring, O’ such that category 3. Pij (g) 33 interpreted based on the
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normalized truth value of the derived predicate.
8pecifically,

E

L o

where lcatil and lcatjl are the number of segmants
classified as category i and category j,
respectively. Because all such predicates are not
defined between all Possible pairs of segments,
the normalizing factor (the denominator) 1is
subject to redefinition on a case by case basis,
Alternatives to (2) are described following the
dascription of derived predicates below.

L I predyy‘d(x, 1)
-8 _8y
leat; | x |catjl

(2)

pij(g)

otherwise

An aexample of a fuzzy predicate Pij(g) from our
domain is the relationship "is near”, wherae
category i "is near" category 3. The
corresponding derived predicate pred; (9)(k,l)
describes the relationship betwaen two segments,
s, in category 1 and 8; in category j. The sum of
pred; (9) (x,1) for all posaible pairs of segments
8y and s; 1s normalized by the maximum possibla.

Definitions of prcdij(g’(k,l) are dependent on the
underlying semanticé of the problem domain. One
approach is to define them Propositionally as
{0,1) if a measurable relationship betwaeen s, and
8; 1s within or beyond some threshocld. A sacond
approach preferred here 1s tc define them as fuzzy
truth functions on the interval [0,1]. Inverse
exponential truth functions are commonly used in
fuzzy set theory to measure the "nearness" of two
concepts. An alternative nearness measuras are in
[2I85]. For example, if the description of Py {g)
contains a nominal value (a.g., the SJ is
approximately 50 kilometers from the NW) then let
X, represent the nominal value and

prod::‘k,l) = g -pIXO-XI (3)

where

X is the observed value corresponding to the
same measure (diastance, curvative, angle of
declination) betwesn 8, and s,

B is a constant contrast factor in [0,1]
which smphasizes the magnitude of the
difference betwaen the observed and nominal
value when increased

There are many situations for which the nearnass
maasure is not bounded by an ideal but the closer
to sy the better. In such cases, X, can be
replaced by zero in formula (3).

"Not near" or "as distant as possible" may be

measured by the furzy complement of (3).

pmg’ (k1) =1 - £0) (@)

where £() is the right side of formula (3).

Some relstionships such as "above" or "amallex"”
Are not easily modelled as nearness measures.
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Such relationships can be considered as ordinary
Propositional truth values.

{1
preéz)(k,l) = {

Lo

If there is a measure X associated with the
relationship and Xy > X; when the condition is
mat, the derived predicate of formula {(5) can be
represented by the ceiling function

is Sx and s; are so related

(5)
otherwise

9)
preéj = [ -X3) 7 (1% -y 1+1) ] (6)

For P(Q)i + ®@ach object attached to cat; raquires
leatyi avaluations of pred(g)i . Tha multipla
evaluations are combined to a aEngle value using

fuzzy OR

(q)
max [preg ;k,l)]; for each 8 in caty (7)
Sl i . )
This corraesponds to finding the best segment, 33,
that matches the relationship for a given segment
8. By contract, the combination rule

min [prég)
8

ijk'l)]: for each s, in caty (8)

corrasponds to fuzzy AND.
by the formula (2) is

The heuristic implied

)
z prcéi;k,l)/!catjl; for each sy in caty (9)
[ ]
1

which corresponds to the average truth functional
value of s, with all 8; segrents in cutj.

Let f(g)ij(k) stand for the segment lavael
combination rule, (7), (8), or (9). Possible
aggregation rules to compute Pij(g) are

z égljk)flcatil (10)
Bk
max [égljk)] (11)
k

9)
t-n:n [4 ijk” (12)

which correspond to average, baest, and worst
match, respectively. The aggragation rule of
formula (10) is the one implied by formula (2).

EXAMP LE

Fig. 3 is a reproduction of Fig. 1(a) with most
sagments laballed (correctly). Eight segments are
labelled as 83, 83, ..., 8g and are used below in
20 example. Table 1 lists and defines all
Pradicates and derived predicates required for the
semantic nat of Fig. 2. The notation lcaty |




Table 1.

Functional [Pred{k,l

1) max [exp(-0.5 x)}/lcoor]|
x

Predicate

Descrigt{pps

scription

near known CS coordinates (distance = x}

cs,c8
2) -0.58 t -1 near other C3 se nt {distance = x)
Pe.,c- ?I'&:g(ktl X))/ (lex °.| ! i
plt} (1/|aat g ) Elexp(~0.51100-x{}1/|cat gl WE diameter near 100 km {(distance = x)
we,ve x - - - . .
2) -0.58 t. -1 near other WE se nt (distance = x)
we, ve max lexp(0;8 X1/ (lontugl) " e
(1) (1/10at DI [ (K-X) /(1Xy-X%y [+1) ] 1/ [cat gl WE mozth of NW (X, and X; are latitudes)
»e,nw x
1
1) max [exp(-0.5 x)]/|cat,, |-1} near other NW segment (distance = x)
nw,nw x where k#l
() (1/IOlt.'l)!Z[-xp(—O.BISO-:I)]/leatm,l NW 50km from SW (distance = x}
v, 8w x
(2) (1/1cat g DE [ [{X-X)/(1Xy-Xy 14111 1/1oaty, | NW noxth of SW (X, and X; are latitudes)
aw, sw S
1
L) -0.5 to -1 near other SW segmant {(distance = x
av,aw -:’v{::g(ktl x)1/1cat gyl -1} e )
P::)e. (1/|¢.t°.|)£ r [(*k'xl”(|‘k'x1'*1’1 }/1caty,| SW north of CE {X, and X; are latitudes)
’
1
p® (1/font g t) Llexp(-0.51100-x|) ]/ lcat gyl CE dismeter riear 100 km (distance = x)
ce,ce o x ce
pé:?c. n:xuﬁ::g(;gis x)]/] (catgql-1) near other CE sagment (distance = x)
) -0, -1 -
po,o -:x'g::g(h’ls x)]/l(catol ) near other O segmeant (§intnnco x)
’:-t (1/|c.t.|)£(1-.xp(-o.5:)]/lcat°| not near CS, WE, CE, NW, or SW

refers to the number of segments that are an
instance of category h. The value 0.5 is chosen
arbitrarily for P in all derived pradicates. The
exponential form of derived predicates 1s used for
all ralationships except "north of" where formula
(6) is substituted. The default value for any
predicate or derived predicate is zero should a
denominator evaluate to zaero.

The eight segments distinguished in Fig. 3 are
characterized in Table 2. For this example, we
need only the geophysical coordinates, the
distances between segment centroids, and the
distances between the closest points of segments.
A larger, more complete description might also
contain the length and degrea of curvature of each

sagment .

Table 3 lists six organisms together with thelr
fitness function values which are computed using
the predicates in Table 1. The fitness function
is given by formula (2). The combination and
aggregation rules are formulas (7) and (12},
respectively. Derived predicates are variations
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of formulas (3) and (4) except "north of", which
is represented by formula (6) with the requisite
measure being latitude. Organism O; has no
segments labelled incorrectly. ©; has two
segments labelled incorrectly. O3 through O¢ have
3, 3, 5, and 8 incorrectly labelled segments,
respectively. The fitness function values
correspond roughly to the correctness of the
labelling. Additional predicates (i.e., a more
complex semantic net) would improve upon the
ordering and separation in most cases.

CONCLUSION

A model for labelling complex scenes via genetic
algorithms with fuzzy fitness functions evaluated
over semantic nets and GAs is possible. Truth
fFunctionals indicating the degree to which
specific interfeature relationships are fulfilled
are combined at the segment level then aggregated
at the category level using fuzzy set operators.

We are currently investigating such issues as the
affect of many predicates clustered on one or two
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Figure 3. Segmented Image With Correct Labels

Table 2.

Segment Descriptors

A. Centroid Position in Fractions of Latitude and lLongitude

b. Distancas Batween Centroids (kilometers)

Segment Latitude Longituds 8y LY 83 8, S, L 39 LY
s, 39,48 70.04
L7 38.82 68.69 8y 0.00 127.50 23%7.5% 283.03 342.93 375.45 368.68 416.7¢
3, 39.52 €6.84 83 127.50 0.00 164.60 169.3% 217.12 247.96 243.5% 316.38
3, 38.37 €6.67 IJ 257.58 164.60 0.00 11%.831 219.21 209.60 167.14 159.20
Ss 37.33 66,72 L1 293.03 168.39% 115.: 0.00 104.08 98.13 75.67 186.73
s¢ 37.82 66.06 Sy  342.93 217.12 219.21 i0A.08  T.00 85,36 15438 3éé.ma
8, 38.07 €5.01 !‘ 375.45 247.96 209.60 98.13 5€.36 0.00 58.67 223.8¢
s, 39,54 64.86 87 368.68 243.55 167.14 73.67 104.29  58.67  0.00 16S.51
8y J16.76 316.35 159.20 186.73 266.84 223.86 165.51  0.00
e, Closest p imities (kil Tt )
8, 3, 3, W 35 LP L s
s, 0.00 127.13 - - - - - - - -
8; 127.13  o0.00 - 80,42 - - - -
55 - - 0.00 31.26 - - az.80 - o
- . - 8.4z 3126 0.00 12.72  15.39 16.93  35.00
S5 - - - 12712 0.00 0.00 - -
%, - - - 15.39  0.00 0.00 - -
s, - - 2.0 16.93 - - 0.00 20.92
s, - - - 38,00 - - 20.92  o0.00
s ORIGINAL PAGE IS
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Table 3. Fitness Function Values for
Selected Organisms

0 = <NW SW YW SW CE CE CE CE> E({Oy) = 2.2098
0, = <SW SW WW NW CE CE CX CE®> : R(05) = 2.2511
0y = < SWEW MW CE CE ¥W S0 R{Og) = 2.1251
0, = <SW SW KW CE MW CE CE CZ> : E(0) = 1.4731
Og = <W FW CZ CE SW NW SN CE> R(Og) = 1.6757

<SW CR SW CE SW NW SW¥w> ; E(0g) = 0.9238

categories, alternate forms for the truth
functionals themselves, and the crossover rules.
Our image set consists of six segmented infrared
photographs of the North Atlantic, each photograph
having a different degree of observation. Our
tastbed will consist of a GA algorithm capable of
manipulating the alleles’ correspondence to the
semantic net.

REFERENCES
[BO87] Booker, Lashon, "Improving Search 1n
Genetic Algorithms", Genetic Algorithms
and Simulated Annealing, Lawrence Davis,
Ed., Morgan Kaufmann, Los Altos, CA, 1987,
pp. 61-73.

[GO86] Goldberg, David E., "A Tale of Two
Problems: Broad and Efficient Optimization
Using Genetic Algorithms," Proc. of the
Summer Computer Simulation Conference,

July 28-30, 1986, Reno, Nevada.

[Go88] Goldberg, David E., Genetic Algorithms in
Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA,

1988.

[HO75] Holland, John H., Adaption in Natural and
Artificial Systems, University of

Michigan Press, Ann Arbor, Michagan, 1975.

[L.C87] Lybanon, M. and R.L. Crout, “"The NORDA

GEOSAT Ocean Applications Program”, John

Hopkins APL Technical Digest, Vol 8, No.
2, April/June 1987, pp. 212-218.

{RI83] Richardson, P.L., "Gulf Stream Rings",
Eddies and Marine Science, A.R. Robinson
(ed.), Springer Verlag, New York, 1983,
Pp. 19-45.

685

[TB86]

[YA75]

[ZA88]

[2185]

Thomason, Michael G. and Richard E. Blake,
"pevelopment of An Expert System for
Interpretation of Oceanographic Images”,
NORDA Report 148, June 1986.

Yager, Ronald R. "pecision Making with
Fuzzy Sets™, Decision Sciences, Vol 6, 3,
July 1975, PP- 590-600.

Zadeh, Lotfi A., "Fuzzy Logic"VComEuter,
vol 21, 4, April 1988, ppP. 83-93.

Zimmermann, Hans -J., Fuzzy Set Theory and
Its Applications, Kluwer Nijhoff
Publishing, Dordrecht, The Netherlands,

1985.

ORIGINAL paG
£ PO El
OF POOR QUALiTY






